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Abstract

Zuber's analysis of the acceleration reaction on a bubble in a concentrated suspension is extended to
the case in which the bubble radius changes with time. The analysis is based on a cell model: the bubble
is at the centre of a sphere ®lled with incompressible ¯uid. The bubble grows and translates, whereas the
centre of the outer boundary is at rest; thus the calculations are performed in a frame of zero total
volume ¯ux. The predicted force on the bubble in a concentrated suspension agrees, in the dilute limit,
with previous results for the force on a single bubble growing in unbounded ¯uid, and becomes large as
the volume fraction of the gas increases. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The added mass of an accelerating bubble is usually explained in terms of the inertia of the
surrounding, entrained liquid which must also accelerate. The volume of liquid so entrained
depends upon the volume of the bubble. If a bubble grows while translating at constant
velocity, the mass of entrained ¯uid increases, and a force must be applied to the bubble in
order to accelerate the additional mass of entrained ¯uid. The force on a single bubble growing
in unbounded, inviscid ¯uid has been computed (e.g. Lhuillier, 1982), but no estimates are
available when the volume fraction of growing bubbles within a bubbly ¯uid is large.

Zuber (1964) predicted the added mass of bubbles of ®xed radius in a concentrated
suspension, using a cell model in which the bubble was at the centre of a ¯uid-®lled sphere. He
cites an analysis in Lamb (1932, }93) who in turn refers to earlier work by Stokes. In the frame
of zero mixture velocity (i.e. the frame in which the outer spherical boundary is at rest), the
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force F on the gas bubble is

F � rLVG

2

3ÿ 2EL
EL

� �
_UG �1�

where rL is the density of the liquid, VG the volume of the gas bubble, EL the volume fraction
of liquid, UG the velocity of the bubble and the dot Ç represents di�erentiation with respect to
time t, so that UÇG is the bubble acceleration. Zuber's analysis, in which the outer boundary is
at rest, has been extended by Cai and Wallis (1994) in order to examine the e�ect of the
impedance of the external boundary. Although cell models are only approximate, Sangani et
al. (1991) and Sangani and Prosperetti (1993) found that Eq. (1) was a good approximation to
results obtained by more rigorous analysis.
Here an analysis similar to that of Zuber is performed in order to estimate the forces

acting on a bubble which grows: there is no guarantee that the results will be as accurate as
they are for a suspension of bubbles of ®xed volume.
Lamb's (1932) analysis is based on the total kinetic energy of the liquid between two

concentric spheres, the inner of which translates at a ®xed velocity UG=EÇ . If the inner sphere is
displaced by a distance E, then by symmetry the total kinetic energy varies by at most O(E 2)
rather than O(E). If the inner sphere accelerates the rate of change of the kinetic energy
contains terms O(EEÇ ), which are zero when E = 0. An analysis based on spheres which are
instantaneously concentric therefore su�ces to obtain the added mass. These arguments no
longer hold when the inner sphere translates and grows simultaneously. It is therefore safer to
use the unsteady form of Bernoulli's equation in order to evaluate explicitly the forces acting
on the bubble. We shall require the time derivative of the ¯uid velocity potential, which must
therefore be evaluated to O(E).

2. Potential ¯ow between two nearly concentric spheres

We assume that the bubble has radius R1. The outer container, of radius R2, is ®lled with
incompressible, inviscid ¯uid of density rL. We assume irrotational ¯ow, and hence seek a
velocity potential f such that the ¯uid velocity

u � rf �2�

where

r2f � 0: �3�

We use a spherical polar coordinate system (r, y) based on the centre of the container, and
assume that the centre of the bubble is at EzÃ , where zÃ is a unit vector in the direction y = 0,
with E<<R1 and E<<R2ÿR1. The surface of the bubble is

r � R1 � E cos y �4�
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with normal

n � 1;
E sin y
R1

� �
�5�

to leading order in E/R1. The geometry is shown in Fig. 1. We look for a velocity potential of
the form

f � A

r
� Br� C

r2

� �
cos y� Dr2 � E

r3

� �
�3 cos2 yÿ 1� � � � � : �6�

Incompressibility requires that the radius of the outer container changes when the bubble
grows. We assume that both the bubble and outer container remain spherical, with the volume
of liquid 4

3p�R3
2 ÿ R3

1� constant: the liquid volume fraction EL and gas volume fraction EG are
related by

EL � 1ÿ �R1=R2�3 � 1ÿ EG: �7�
On equating the velocity of the outer boundary to that of the liquid normal to the boundary,
we ®nd

A � ÿR2
2

_R2 � ÿR2
1

_R1 �8�

B � 2C=R3
2 �9�

2DR2 � 3E=R4
2: �10�

The bubble translates with velocity UG=EÇ along the direction y= 0 so that the total velocity
normal to the bubble surface is

Un
G � _R1 � _E cos yÿ E sin2 y

R1

� �
�O�E2� �11�

Fig. 1. The sphere of gas with radius R1 and centre at z = E, surrounded by liquid, with outer spherical boundary of

radius R2 and centre at z = 0.
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whereas the ¯uid velocity normal to the surface of the bubble given by Eq. (6) is

un � @f
@r
� E sin y

R1

� �
1

r

@f
@y

� �
r�R1�E cos y

�O�E2�: �12�

Comparing Eqs. (11) and (12), we obtain, after some algebra

B � ÿR3
1�_E� 2E� _R1=R1��

R3
2 ÿ R3

1

�13�

C � ÿR3
1R

3
2�_E� 2E� _R1=R1��
2�R3

2 ÿ R3
1�

�14�

D � 3E_ER3
2R

3
1

4�R5
1 ÿ R5

2��R3
2 ÿ R3

1�
�15�

with E given by Eq. (10). Note that D and E are O(E), and vanish when E = 0.
We shall determine the forces acting on the outer spherical boundary, and on a bubble

concentric with the outer boundary, i.e. when E = 0. This will require the unsteady form of
Bernoulli's equation

@f
@t
� 1

2
u2 � p

rL
� Cb �16�

where p is the ¯uid pressure and, for irrotational ¯ow, Cb is a constant throughout the ¯uid.
On the outer boundary

ur � ÿA=R2
2 �17�

uy � ÿ B� C

R3
2

� �
sin yÿ DR2 � E

R3
2

� �
6 sin y cos y�O�E2� �18�

and

@f
@t
�

_A

R2
� _BR2 �

_C

R2
2

 !
cos y� _DR2

2 �
_E

R3
2

� �
�3 cos2 yÿ 1� � � � � : �19�

The force F2 acting on the outer boundary in the direction y = 0 is

F2 � 2pR2
2

�p
0

p�R2; y�cos y sin ydy �20�

and hence, when E = 0
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F2 � ÿ 4pR3
2rL
3

_B�
_C

R3
2

 !

� 4

3
pR3

2rL
3�ER3

1

2�R3
2 ÿ R3

1�
� _E _R1R

2
1�15R3

2 � 3R3
1�

2R3
2�R3

2 ÿ R3
1�

� �
: �21�

The mean pressure gradient is

@p

@z
� F2

4

3
pR3

2

� �ÿ1

� rL
2�R3

2 ÿ R3
1�

3�ER3
1 �

_E _R1R
2
1�15R3

2 � 3R3
1�

R3
2

� �
�22�

where z is the direction y = 0. On the surface of the bubble, when E = 0

ur � _R1 � _E cos y: �23�

uy and @f/@t are given by expressions analogous to Eqs. (18)±(19). The force F1 acting on the
bubble in the direction y = 0 is

F1 � ÿ2pR2
1

�p
0

p�R1; y�cos y sin y dy �24�

and hence, when E = 0

F1 � 4pR3
1rL
3

_B�
_C

R3
1

� _E _R1

R1

 !

� ÿ 4

3
pR3

1rL
�E�2R3

1 � R3
2�

2�R3
2 ÿ R3

1�
� _E _R1�15R3

1 � 3R3
2�

2R1�R3
2 ÿ R3

1�
� �

: �25�

Note that the total external force which must be applied to the system is

ÿ�F1 � F2� � ÿ 4

3
pR3

1rL �E� 6 _R1_E
R1

� �
: �26�

The pressure p varies over the surface of the bubble, and we have assumed that surface tension
is su�ciently strong to keep the bubble close to spherical. The mean pressure pS over the
bubble surface when E = 0 is

pS
rL
� Cb ÿ

_A

R1
ÿ 1

2
_R2
1 ÿ

1

6
_E2 ÿ 1

3
B� C

R3
2

� �2

: �27�

The mean pressure pL over the volume of liquid VL when E= 0 is
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4

3
p�R3

2 ÿ R3
1�pL � 2p

Z R2

R1

r2 dr

Z p

0

p�r; y�sin ydy

� 2prL

Z R2

R1

2Cb ÿ 2 _A

r
ÿ A2

r4
ÿ 1

3
Bÿ 2C

r3

� �2

ÿ 2

3
B� C

r3

� �2
" #

r2 dr: �28�

Hence

pL ÿ pS
rL

� R3
2_E

2

4�R3
2 ÿ R3

1�
ÿ 3 _R2

1�R2 ÿ R1�2�R2
2 ÿ R2

1�
2R2�R3

2 ÿ R3
1�

ÿ R1
�R1�R2 ÿ R1�2�2R2 � R1�

2�R3
2 ÿ R3

1�
: �29�

The mean pressure gradient (Hp)L within the liquid volume VL is

4

3
p�R3

2 ÿ R3
1�r�p�L �

Z
VL

�rp�dV �
Z
SL

p dn �30�

where n is the outward facing normal of the liquid surface SL, and hence when E = 0

@p

@z

� �
L

� 3�F1 � F2�
4p�R3

2 ÿ R3
1�
� R3

1rL
�R3

2 ÿ R3
1�

�E� 6 _R1_E
R1

� �
: �31�

If RÇ1=0, then by Eq. (25) the force on the bubble is

F1 � ÿ 4

3
pR3

1rL _UG
1� 2EG
1ÿ EG

� �
�32�

in agreement with Zuber (1964). As R241

F14ÿ 4

3
pR3

1rL
�E
2
� 3 _R1_E

2R1

� �
�33�

and by Eq. (29)

pS
rL
4

pL
rL
ÿ _E2

4
� 3 _R2

1

2
� R1

�R1 �34�

as found by Lhuillier (1982) in unbounded ¯uid.
Since the mixture velocity is zero, we may de®ne a mean liquid velocity UL such that

�R3
2 ÿ R3

1�UL � R3
1UG � 0: �35�

It is tempting to di�erentiate Eq. (35) in order to obtain the mass-acceleration of the liquid,
and hence that of the entire system (on the assumption that the density of the gas is zero). This
leads to

4

3
prL�R3

2 ÿ R3
1� _UL � ÿ 4

3
prL�R3

1
_UG � 3R2

1
_R1UG: �36�

However, this argument is wrong. We see that although the term in �E=UÇG in expression (36)
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for the total mass-acceleration agrees with the corresponding term in the total force, Eq. (26),
the terms in EÇRÇ do not agree. We must be more careful. Let us assume that the centre of mass
of the liquid is at z = d and that of the gas is at z = E. Then

�R3
2 ÿ R3

1�d� R3
1E � 0 �37�

so that

�R3
2 ÿ R3

1�_d� R3
1_E� 3R2

1
_R1E � 0 �38�

and

�R3
2 ÿ R3

1��d� R3
1�E� 6R2

1
_R1_E� �6R1

_R2
1 � 3R2

1
�R1�E � 0: �39�

Thus, when E = 0, the mass-acceleration given by Eq. (39) does indeed agree with the total
force, Eq. (26). The velocity _d of the centre of mass is equal to UL when EÇ=0, as shown by
Eq. (38), but the acceleration �d$UÇG if RÇ1$0.

3. Application to two-¯uid models for multiphase ¯ow

We now consider how the results obtained above may be used in two-¯uid models (in some
approximate way) when the disperse phase volume fraction is not small. We ®rst consider
incompressible bubbles. Zhang and Prosperetti (1994a) studied dilute suspensions of spherical
particles, and obtained, by rigorous analysis, equations for the motion of the continuous and
disperse phases. We write their Eq. (5.10) for the disperse (gas) phase in the form

rGEG
@huGi
@t
� huGi � rhuGi

� �
� ÿ EGrhpLi

� C1rLEG
2

@huLi
@t
� huLi � rhuLi ÿ @huGi

@t
ÿ huGi � rhuGi

� �

� 1

2
rL�r ^ huLi� ^ �huGi ÿ huLi�

� rG �
1

2
rL

� �
r � �EGMd� � EGFG: �40�

Here rG is the density of the gas, huGi and huLi are the ensemble averages of the velocity in the
gas and liquid phases, hpLi is the ensemble average of the pressure in the continuous (liquid)
phase, the added mass coe�cient C1=1 in a dilute suspension, Md is the ¯uctuating volume
¯ux tensor and FG is the force per unit volume acting on the bubble, which Zhang and
Prosperetti (1994a) took to be that due to gravity. We assume that the ¯ow is irrotational so
that the third term on the right-hand side of Eq. (40) is zero. The cell model of Section 2 has
only one bubble, so ¯uctuations are zero and we set Md=0. We now apply the momentum
Eq. (40) to motion in the concentric cell model of Section 2 in the direction y = 0, and identify

J.D. Sherwood / International Journal of Multiphase Flow 25 (1999) 705±713 711



the ensemble average velocities of Eq. (40) with the mean velocities of Eq. (35), so that
huGi= UG=EÇ and huLi= UL=ÿR 3

1EÇ/(R
3
2ÿR 3

1). The gas density rG=0. The external force
acting on the bubble is FG=ÿ F1, where F1 is given by Eq. (25). The continuous phase
average pressure hpLi is de®ned by Zhang and Prosperetti in such a way that di�erentiation
does not commute with averaging: we nevertheless assume that HhpLi is given by the mean
pressure gradient (Hp)L, Eq. (31). The acceleration of the (incompressible) bubble is �E, and the
acceleration of the liquid is �d=ÿR 3

1�E/(R
3
2ÿR 3

1) by (39). Inserting all these results into Eq. (40)
we obtain

0 � ÿ rLR
3
1�E

R3
2 ÿ R3

1

ÿ C1rLR
3
2�E

2�R3
2 ÿ R3

1�
� rL�E�2R3

1 � R3
2�

2�R3
2 ÿ R3

1�
�41�

and hence

C1 � 1: �42�
Zhang and Prosperetti (1994a, Sections 6 and 7) discuss the extension of their results to linear
problems at higher volume fractions, and C1 in Eqs. (40)±(41) is equivalent to their C. They
conclude that previously published results suggest that C1 is close to 1, with Zuber's added
mass (1) corresponding to C1=1. Zuber's added mass contains a contribution to the force on
the bubble due to the pressure gradient: when the pressure gradient is explicitly included in
governing equations of the form (40) it is important that this contribution should not be
included twice due to incorrect choice of C1.
In a second paper Zhang and Prosperetti (1994b) consider spherical, compressible bubbles. If

all the bubbles have the same size, in the absence of particle inertia, ¯uctuations and vorticity
Zhang and Prosperetti's disperse phase momentum Eq. (99) (equivalent to Eq. (40) above)
becomes

EGrhpLi � C1rLEG
2

@huLi
@t
� huLi � rhuLi ÿ @huGi

@t
ÿ huGi � rhuGi

� �

� 1

2
C2rLn _VG�huLi ÿ huGi� � EGFG �43�

where C1=C2=1 in a dilute suspension, and n is the number density of bubbles so that nVG is
(to a ®rst approximation) the gas volume fraction EG. The compressible momentum Eq. (43)
di�ers from the incompressible Eq. (40) by the term in VÇG, and nothing is known about how
the coe�cient C2 of this term varies with volume fraction.
If we follow the same substitutions for the forces and velocities as above, but keep terms in

EÇRÇ1, we ®nd that Eq. (43) is identically satis®ed if

C1 � 1; C2 � 1ÿ EG: �44�
This suggests how equations of the form (43) should be modi®ed when the dispersed volume
fraction is no longer small, though there are as yet no computations (equivalent to those of
Sangani et al. (1991) for incompressible bubbles) to give rigorous justi®cation for such an
extension to large volume fractions.
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